New pentafluorothio (SF₅) esters

Rolf Winter and Gary L. Gard* Portland State University, Portland, OR 97207-0751 (USA)

Abstract

The addition of either SF₅Br or SF₅Cl to a number of unsaturated esters is discussed. The new SF₅ esters, SF₅CH₂CHBr(OAc), SF₅CH₂CHBrC(O)OC₂H₅, SF₅CH(C(O)OC₂H₅)CHBr(OAc) and SF₅CH₂CHClCH₂OAc, were prepared from vinyl acetate, ethyl acrylate, β -acetoxyethyl acrylate and allyl acetate, respectively (OAc = CH₃C(O)O). The ester SF₅CH₂C(O)OCH₃ was prepared by peracid oxidation of the acetal SF₅CH₂CH(OCH₃)₂. Base treatment of SF₅CH₂CHClCH₂OAc did not give an epoxide but, unexpectedly, produced the novel SF₅CH=CHCH₂OH. This alcohol is the first example of an SF₅-containing ene-ol.

Introduction

The introduction of pentafluorothio groups (SF₅, pentafluoro- λ^6 -sulfanyl) into molecular systems can bring about substantial changes with regard to their physical, chemical and biological behavior. These new properties are manifested in a multitude of uses, or potential uses, such as surface-active agents, fumigants, thermally and chemically stable systems, solvents for polymers and perfluorinated blood substitutes [1]. On several occasions we have undertaken to prepare SF₅-containing carboxylic esters, where the SF₅ group was contained either in the acid or the alcohol moiety. These compounds were intended to be versatile building blocks in several instances.

SF₅-containing esters have been obtained previously by the reaction of acid chlorides or fluorides with alcohols [2], from sultones and alcohols [3], from a ketene and alcohols [4] and by adding SF₅Cl to vinyl acetate [5]. Furthermore, SF₅-perfluoroacetic esters were obtained by SF₅Cl addition to CF₂=CFOR; the perhalo ether was converted to the ester with oleum [6].

Results and discussion

In our studies, the first reaction sequence was aimed at obtaining an ester of pentafluorothioacetic acid (SF₅CH₂COOH). Such esters are easily capable of synthesis by bringing together an alcohol and pentafluorothioacetyl chloride; the latter is made by adding SF_5Cl and ketene [7]. In order to avoid the preparation and handling of the noxious ketene, we sought a process that would circumvent its use. In our method, SF_5Cl was added, as described [5], to vinyl acetate:

$$SF_5Cl + CH_2 = CHOAc \longrightarrow SF_5CH_2CHCl(OAc)$$
 (1)

Conversion to an acetal was achieved by setting aside the α -chloroacetate with an excess of alcohol, in the same fashion as iodo- and bromo-acetals are obtained [8]. The yields after distillation were >70%:

$$SF_{5}CH_{2}CHCl(OAc) + ROH (excess) \longrightarrow$$

$$(R = CH_{3}, C_{2}H_{5})$$

$$SF_{5}CH_{2}CH(OR)_{2} + HCl + ROAc + H_{2}O \quad (2)$$

Peracid oxidation of the acetal resulted in the formation of a carboxylic ester:

 $SF_5CH_2CH(OR)_2 + m$ -chloro-perbenzoic acid \longrightarrow

$$SF_5CH_2C(O)OR$$
 (3)

 $(R = CH_3)$

The acetals obtained as depicted in eqn. (2) were only obtained for ethyl and methyl alcohol; CF_3CH_2OH , and benzyl alcohol did not react. Hydrolysis of the acetals to the aldehyde SF_5CH_2CHO was not a useful reaction as the aldehyde decomposed concomitantly under the conditions employed.

In forming the SF_5 ester [eqn. (3)], it was found that after initial formation of a clear liquid mixture, a precipitate was formed that dissolved upon further heating. As speculated by Heywood and Phillips for an analogous case [9], the intermediate could be a hemiacetal *m*-chloroperbenzoate ($SF_5CH_2CH(OR)$ -

^{*}Author to whom correspondence should be addressed.

OOC(O)C₆H₄Cl). This point was not pursued, however. The product, SF₅CH₂C(O)OCH₃, was obtained in 66% yield and required no further purification. This method could be a useful alternative to preparing simple aliphatic esters of SF₅CH₂C(O)OH. Oxidation of a fluoroacetal was also used by Wakselman and coworkers to synthesize fluorocarboxylic acids [10].

We also studied the addition of SF₅Br to vinyl acetate, but this was only possible on a small scale, with considerable exertion, and lower yields, as compared to the SF₅Cl addition. The more reactive SF₅Br showed partial expulsion of SF₄ and the addition of BrF, which at elevated temperature (> -110 °C) was the sole reaction. The product, most likely CH₂BrCHFOAc according to ¹⁹F NMR spectroscopy, decomposed readily and was therefore not characterized further.

$$SF_{5}Br + CH_{2} = CHOAc$$

$$\longrightarrow CH_{2}BrCHF(OAc) \quad \{>-110 \ ^{\circ}C\}$$

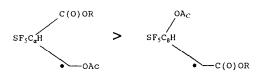
$$\longrightarrow SF_{5}CH_{2}CHBr(OAc) \quad \{<-110 \ ^{\circ}C\}$$
(4)

Qualitatively, we also found that $SF_5CH_2CHBr(OAc)$ is convertible to acetals, as found for $SF_5CH_2CHCl(OAc)$.

In our second sequence, SF_5Br was added to ethyl acrylate; because the double bond in acrylic esters is less reactive than in vinyl acetate, it was possible to use SF_5Br without the expulsion of SF_4 to any extent.

$$CH_{2} = CHC(O)OC_{2}H_{5} + SF_{5}Br \longrightarrow$$

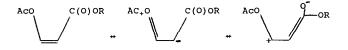
$$SF_{5}CH_{2}CHBrC(O)OC_{2}H_{5} \quad (5)$$


The above reaction proceeds in the absence of solvent and in a controlled fashion, as opposed to the reaction of vinyl acetate and SF₅Br [eqn. (4)]. It was not possible to dehydrobrominate the adduct as apparently the α hydrogen atom is more acidic than the β -hydrogen, which therefore leads to the elimination of {HSF₅}. The ensuing product, α -bromoethyl acrylate [11] was indeed detected.

SF₅CH₂CHBrC(O)OC₂H₅

$$\xrightarrow{X \to SF_5CH=CHC(O)OC_2H_5} (6)$$

The greatly different reactivities of vinyl acctate and ethyl acrylate towards SF₅Br should make it possible to introduce the SF₅ group at a secondary carbon atom if β -acetoxyethyl acrylate [12]* were used as the substrate. It has already been seen that SF₅X (X=Br, Cl) adds to vinyl acetate as well as to ethyl acrylate, such that the SF_5 group is attached at the terminal carbon. The addition to vinyl acetate is much more efficient than the addition to ethyl acrylate, as inferred from the almost uncontrollable reaction of the former with SF_5Br and the comparatively mild reaction with the latter.


The radical chain-transfer coefficient for a compound parallels the increase in radical reactivity of the radical formed: vinyl acetate > methyl acrylate [13]. Hence, if the SF₅ radical adds at the end of vinyl acetate, a more reactive radical should result than from terminal addition to ethyl acrylate. Assuming that the characteristics of vinyl acetate and ethyl acrylate are retained independently to some degree in β -acetoxyethyl acrylate, addition of SF₅ · to C_a should lead to a more reactive radical than addition to C_b:

The addition of SF₅X to C_{α} should therefore be preferred to addition to C_{β} with the preponderance of the product shown:

A stronger argument for this orientation of addition comes from a consideration of polar effects: an electrophilic radical such as $SF_5 \cdot$ tends to be more reactive with electron-rich rather than electron-poor olefins, as exemplified with vinyl acetate and ethyl acrylate. Mesomeric structures for ethyl acrylate, vinyl acetate and β -acetoxyethyl acrylate show that, in the latter, an increase in charge density is to be expected at the position vicinal from the OAc group and should therefore be the primary position of $SF_5 \cdot$ radical attack.

For this reason, our third reaction sequence was concerned with an investigation of the reactivity of β acetoxyethyl acrylate towards pentafluorothio halides. While β -acetoxyethyl acrylate did not react at all thermally with SF₅Cl or SF₅Br, addition of SF₅Br occurred photochemically at low temperature; the product was sensitive to elevated temperatures. In the dark, no SF₅Br addition was observed at room temperature.

^{*}Both Freeman *et al.* and Salmon *et al.* describe β -acetoxyethyl acrylate as a yellow liquid. It was found that slow distillation resulted in a completely colorless oily product.

AcO

$$CH=CH$$

$$C(O)OC_{2}H_{5}$$

$$CH=CH$$

$$C(O)OC_{2}H_{5}$$

$$C(O)OC_{2}H_{5}$$

$$C(O)OC_{2}H_{5}$$

$$CHBr(OAc)$$

$$C(O)OC_{2}H_{5}$$

$$CHBr(OAc)$$

$$C(O)OC_{2}H_{5}$$

$$CHBr(OAc)$$

$$CHBr(OAc)$$

In comparison to ethyl acrylate and vinyl acetate, the reactivity of β -acetoxyethyl acrylate is greatly diminished, as inferred from the reaction conditions. Steric reasons for this were ruled out, as it was possible to react SF₅Cl with β , β -dialkoxyalkyl acrylates. In these cases, only the chloromalonates could be detected (gas chromatography-mass spectroscopy).

A second (minor) product was also present in reaction (7), and it is assumed that it was the reverse SF_5Br addition product, i.e. RO(O)CCHBrCH(SF₅)OAc; this could only be observed via ¹⁹F NMR spectroscopy and was difficult to remove by distillation. The assignment was based upon the observation that sulfur-bonded fluorine NMR signals suffer an upfield shift when the SF5-bearing carbon is substituted with an electronegative element (e.g. $\phi_{B4} = 53$ ppm in F₅SCHCF₂O [14]). This was observed for this minor product with $\phi_{B4} = 52$ ppm, while the major product had a normal (within the realm of expectation for such compounds) shift of $\phi_{B4} = 67.3$ ppm. This product exhibited two C=O bands in the infrared spectrum, at 1783 cm⁻¹ similar to $F_5SCH_2CH(Cl, Br)OAc (1778 cm^{-1}) and at 1754 cm^{-1}$, similar to $F_5SCH_2C(O)OCH_3$ (1757 cm⁻¹).

Unfortunately, the subsequent reaction of the bromoacetate $F_5SCH(C(O)OC_2H_5)CHBr(OAc)$ with an excess of ethanol or methanol did not result in an acetal. Instead, as revealed by ¹⁹F NMR spectroscopy, an intricate reaction ensued, with the appearance and disappearance of several SF₅ resonances, and the final establishment of two close-lying resonances of about equal intensity at $\phi_{B4} \approx 72$ ppm. The infrared band at 1783 cm⁻¹ disappeared during the course of the reaction. Gas chromatography-mass spectroscopy (DB5 column, 25 m) revealed that a complicated mixture was formed, and the masses of the expected acetals could not be detected. It was found that several of the compounds contained bromine. Further study of this system was abandoned, as distillation resulted in the formation of at least four new SF₅ compounds (¹⁹F NMR spectroscopy).

The fourth example concerns the addition of SF_5Cl to allyl acetate; the reaction was very slow (2 weeks, 100 °C, 60% yield) and produced 2-chloro-3- SF_5 -propyl acetate:

$$SF_5Cl + CH_2 = CHCH_2OAc \longrightarrow$$

$F_5SCH_2CHClCH_2OAc$ (8)

Treatment with base did not produce an epoxide but rather an allylic alcohol in either aqueous KOH or methanolic CH₃ONa. The reaction in methanol took place with only 1 equiv. of base; the allylic alcohol must have been formed by transesterification of an intermittently-formed $SF_5CH=CHCH_2OAc$.

 $SF_5CH = CHCH_2OH$ (9)

To our knowledge, this is the third alcohol that derives from sulfur hexafluoride, the others being SF_5CH_2 -CH₂OH [15] and $SF_5(CF_2)_4CH_2OH$ [16]. It should be pointed out that, with $SF_5CH_2CHCl(OAc)$, HCl elimination seems to be the first step in the base-induced conversion to SF_5CH_2CHO . When $SF_5CH_2CHCl(OAc)$ was treated with 1 equiv. of methanolic KOH, $SF_5CH_2CH(OCH_3)OAc$ (probably formed by nucleophilic addition of methanol to an intermittently-formed $SF_5CH=CHOAc$) was isolated along with SF_5CH_2CHO and $SF_5CH_2CH(OH)_2$.

Experimental

General methods

Volatile materials were handled in conventional Pyrex glass vacuum lines, equipped with either mercury manometers or Heise-Bourdon tube gauges and a Televac vacuum gauge. ¹H and ¹⁹F NMR spectra were usually run at 90 MHz (¹H) and 84.67 MHz (¹⁹F) on a Varian EM-390 spectrometer, otherwise they were run, as indicated, on a Bruker AMX-400 spectrometer (¹H at 400.6 MHz). The following abbreviations are used to indicate splitting patterns: s = singlet; d = doublet; t = triplet; q = quartet; p = pentet, quintet; m = multiplet.

Infrared spectra were obtained from neat samples placed between KBr or NaCl plates on a Nicolet DX-20 spectrometer. Band intensities are indicated by the following abbreviations: vs=very strong; s=strong; m=medium; w=weak; vw=very weak; br=broad; sh=shoulder.

The mass spectra were obtained on a VG 7070 mass spectrometer under the conditions indicated for each compound. In the mass spectra of bromine or chlorine compounds, the masses of fragments of only one isotope are listed, i.e. for ³⁵Cl and ⁷⁹Br. The ionization mode is indicated by the following: EI=electron impact; CI=chemical ionization.

Elemental analyses were carried out by Mikroanalytisches Laboratorium Beller, Göttingen, Germany.

Preparation of $F_5SCH_2CHBrOAc$

Into a 300 ml dry glass-vessel containing a stirring bar and equipped with a Kontes Teflon valve, 100 ml of CCl₃F, previously dried over P_4O_{10} , was vacuumtransferred. Then 12.67 g of SF₅Br (61.2 mmol) were condensed into the solvent. The CCl₃F was allowed to melt and dissolve the SF5Br. Freshly distilled vinyl acetate (Aldrich, 10.0 g, 116.3 mmol) was added by vacuum-transfer and the reaction vessel was allowed to warm slowly in a cold bath until the solution started to melt; it was then swirled so as to achieve complete mixing. Another 7.8 g (37.7 mmol) of SF₅Br was added by the same method. The reaction mixture was now allowed to attain room temperature slowly with stirring. Only slight bubbling was observed. The solvent was then removed (rotary evaporator) leaving 19.8 g of a lightly yellowish liquid. Distillation through a 12 cm Vigreux column gave 8.5 g of a main fraction, b.p. 45-48 °C/6 mmHg. The foreshot and the 48-49 °C fraction (2.0 g in total) had the same composition (¹H NMR spectroscopy) as the main fraction. Yield 10.5 g, 36.2%. The 48-49 °C fraction was used for analysis. ¹H NMR (CDCl₃, Si(CH₃)₄ ext.): $\delta_1 = 2.10$ ppm [s, rel. int. = 3.17 (CH₃)]; δ_2 = 4.74 ppm [m, rel. int. = 1.92 (CH₂)]; $\delta_3 = 7.15$ ppm [d-d, rel. int. = 1.00 (CH)]; $J_{23}(cis) = 9.6$ Hz, $J_{23}(trans) = 3.0$ Hz. ¹⁹F NMR (neat sample, CCl₃F ext.): (AB₄), $\phi_A = 81.4$ ppm (9 lines, rel. int. = 0.96); $\phi_{\rm B}$ = 65.9 ppm (d-m, rel. int. = 4.0); $J_{AB} = 146.4$ Hz. IR (NaCl, neat sample) (cm⁻¹): 3042 (w); 3023 (w); 2988 (w-vw); 1778 (vs); 1419 (m); 1377 (m-s); 1358 (w-m); 1312 (w); 1203 (vs); 1193 (vs, sh); 1103 (s-vs); 1040 (vs); 998 (m); 941 (m-s); 879 (vs); 844 (vs); 817 (s-vs); 735 (w); 675 (w); 645 (vw); 614 (w); 602 (m); 577 (w); 564 (vw). Analysis: Calc. for C₄H₆BrF₅O₂S: C, 16.39; H, 2.06; Br, 27.27; F, 32.42; S, 10.94%. Found: C, 17.19; H, 2.18; Br, 28.86; F, 30.4;

Preparation of $F_5SCH_2CH(OC_2H_5)_2$

S. 9.90%.

To 22.86 g of $F_5SCH_2CHClOAc$ (92.0 mmol) in a 100 ml round-bottom flask, 32.46 g of absolute ethanol (705.6 mmol, 1.56-fold excess) was added at room temperature. The lightly stoppered flask was set aside. After 2 d there was still some $F_5SCH_2CHClOAc$ (IR spectrum), but after another 48 h all the compound had been consumed. The mixture was poured into 200 ml of water, washed again with water (2×30 ml), dried (Na₂SO₄) and distilled through a 12 cm Vigreux column. Product (16.47 g, 73.4%) boiling from 66–72 °C/19–20.5 Torr was collected.

¹H NMR (CDCl₃, Si(CH₃)₄ ext.): $\delta_1 = 1.27$ ppm (t, 6H, CH₃, $J_{H-H} = 7.1$ Hz); $\delta_2 = 3.67$ ppm (m, 6H, H₃CCH₂+F₅SCH₂); $\delta_3 = 4.92$ ppm (t, 1H, CH, $J_{H-H} = 5.2$ Hz). ¹⁹F NMR (neat sample, CCl₃F ext.): (AB₄), $\phi_A = 83.7$ ppm (9 lines, rel. int. = 1.0); $\phi_B = 66.8$ ppm (m, rel. int. = 4.0); $J_{AB} = 143.8$ Hz. IR (cm⁻¹): 3035 (vw); 2985 (s); 2936 (m); 2904 (m); 2893 (m); 2805 (vw); 1484 (w); 1458 (w, sh); 1448 (w-m); 1417 (m); 1378 (m-s); 1361 (m); 1349 (m); 1300 (w); 1229 (w); 1159 (m, sh); 1125 (s-vs); 1063 (s-vs); 1023 (s, sh); 1000 (w-m, sh); 935 (w-m); 906 (s); 865 (s-vs); 840 (vs); 817 (vs); 737 (w-m); 710 (s); 667 (w); 643 (s); 630 (m); 620 (m); 600 (s); 566 (m); 539 (w). MS. (EI, 70 eV) (mass, species, % > 2): 243, $(M - H)^+$, 0.15; $(M+H-C_2H_5-CH_3)^+, 5.0;$ 200,201, (M - $C_2H_5 - CH_3)^+$, 4.9; 199, $(M - C_2H_5O)^+$, 100; 179, $C_4H_7F_4OS^+$, 14.2; 178, $C_4H_6F_4OS^+$, 2.5; 177, $C_4H_5F_4OS^+$, 40.2; 171, $(M-C_2H_5-OC_2H_4)^+$, 26.5; 153, $(M - C_2H_5O - C_2H_5OH)^+$, 3.0; 152, $(M - 2C_2H_5OH)^+$, 2.0; 151, C₂SF₅⁺, 54.3; 127, SF₅⁺, 1.2; 107, C₆H₃O₂⁺, 2.5; 104, C₆O₂⁺, CH₃SF₃⁺, 3.5; 103, CH₂SF₃⁺, 59.7; 92, C₆H₄O⁺, C₂HFOS⁺, 2.7; 91, C₂FOS⁺, 57.4; 89, SF₃⁺, 19.5; 87, C₂H₂O₂C₂H₅⁺, 2.4; 79, FSC₂H₄⁺, 2.9; 77, FSC₂H₂⁺, 11.8; 75, FSC₂⁺, C₂H₃OS⁺, 8.0; 73, C₂HOS⁺, C₃H₅O₂⁺, 7.9; 72, C₂OS⁺, C₃H₄O₂⁺, 2.9; 70, two fragments, SF_2^+ , $C_3H_2O_2^+$, 2.2, 1.9; 69, $C_3HO_2^+$, C₂OC₂H₅⁺, 3.2; 65, C₄HO⁺, 1.5; 64, C₄O⁺, 2.0; 63, CFS⁺, 71.3; 61, $(SC_2H_3+2H)^+$, 11.4; 59, $SC_2H_3^+$, CH₂OC₂H₅⁺, 2.3; 57, SC₂H⁺, COC₂H₅⁺, 4.7; 56, SC₂⁺, $COC_2H_4^+$, 3.6; 55, $COC_2H_3^+$, 6.8; 54, $COC_2H_2^+$ 1.1 Analysis: Calc. for C₆H₁₃F₅O₂S: C, 29.51; H, 5.37; F, 38.9; S, 13.13%. Found: C, 29.50; H, 5.23; F, 39.0; S, 13.03%.

Preparation of $F_5SCH_2CH(OCH_3)_2$

This compound was obtained by a procedure similar to that for $F_5SCH_2CH(OC_2H_5)_2$ with methanol. Yield 81.2%, b.p. 83–84 °C/96 mmHg.

¹⁹F NMR (neat sample, CCl₃F ext.):(AB₄), $\phi_A = 83.1$ ppm (9 lines, rel. int. = 1.0); $\phi_B = 66.5$ ppm (d-m, rel. int. = 4.0); $J_{AB} = 144.7$ Hz. IR (neat sample, NaCl) (cm⁻¹): 2960 (vw); 2945 (w); 2847 (vw); 1465 (w); 1451 (w); 1418 (w); 1387 (w); 1387 (w); 1187 (w-m); 1126 (m); 1078 (m); 1060 (w-m, sh); 1023 (w-m); 976 (w-m); 879 (m-s); 840 (vs); 817 (vs); 725 (w-m); 712 (w-m); 641 (w).

Preparation of $F_5SCH_2C(O)OCH_3$

To 2.96 g of $F_5SCH_2CH(OCH_3)_2$ (13.7 mmol) in a 50 ml round-bottomed flask containing a stirring bar, 2.96 g of m-chloroperbenzoic acid (c. 85%, c. 14 mmol, Aldrich) were added and a reflux condenser was attached. The mixture was heated slowly with stirring to 100 °C when a homogeneous melt was obtained. After c. 2.5 h the melt solidified, but after heating overnight (16 h) it was liquid again. A ¹⁹F NMR spectrum indicated the reaction to be incomplete. Another 1.5 g of peracid was added and heating continued at 96 °C for 20 h. From the mixture, 1.82 g of crude product was collected by vacuum condensation. This product was 99% pure by GC analysis. Yield 66.4%. A sample for elemental analysis was obtained by preparative gas chromatography on an SE-30 column at 100 °C. The ester is a clear, colorless pleasant-smelling liquid.

¹H NMR (CDCl₃, Si(CH₃)₄ ext.): $\delta_1 = 4.58$ ppm [s, rel. int.=3.0 (CH₃)]; δ_2 =5.08 ppm [p, rel. int.=2.0 (CH₂)]; $J_{\rm HF}$ = 7.7 Hz. ¹⁹F NMR (neat sample, CCl₃F ext.): (AB₄), $\phi_A = 78.2$ ppm (9 lines, rel. int. = 1.02); $\phi_{\rm B} = 69.0$ ppm (d-m, rel. int. = 4.00); $J_{\rm AB} = 145.7$ Hz. IR (neat sample, NaCl) (cm⁻¹): 3058 (w); 3002 (w); 2966 (w); 2854 (vw); 1757 (vs, C=O); 1441 (s); 1321 (s); 1272 (m); 1166 (s); 1009 (m); 948 (m); 836 (vs); 787 (m); 709 (m); 660 (m); 611 (w); 569 (vw). MS (EI, 70 eV) (mass, species, % > 1): 181, $(M - F)^+$, 1.5; 180, $(M-HF)^+$, 1.2; 171, $C_2H_4F_5OS^+$, 4.0; 170, (M+- $H-CH_{3}O)^{+}$, 2.9; 169, $(M-CH_{3}O)^{+}$, 81.7; 168, $(M - CH_3OH)^+$, 2.1; 149, $(M - CH_3O - HF)^+$, 2.1; 131, $(M - CH_3O - 2F)^+$, 2.3; 127, SF_5^+ , 20.8; 122. FSCCOOCH₃⁺, 3.1; 119, C₃FO₂S⁺, 2.2; 91, C₂FOS⁺, 5.1; 89, SF_3^+ , $C_2HO_2S^+$ (two fragments), 100, 30.2; 74, CH₂COOCH₃⁺ (¹³C), 1.7; 73, CH₂COOCH₃⁺ (¹²C), 46.3; 72, $CH_2COOCH_2^+$, 11.0; 70, SF_2^+ , 6.8; 69, C₃HO₂⁺, 8.6; 65, CH₂FS⁺, 3.1; 62, CH₂OS⁺ (rearr.), 2.7; 61, CHOS⁺ (rearr.), 64.6; 60, COS⁺, C₂H₄O₂⁺, 4.3; 59, C₂H₃O₂⁺, 36.9; 51, SF⁺, H₂SO⁺ (two fragments), 2.2, 2.1. Analysis: Calc. for C₃H₅F₅O₂S: C, 18.00; H, 2.52; F, 47.5; S, 16.02%. Found: C, 18.17; H, 2.58; F, 48.2; S. 15.96%.

Preparation of $F_5SCH(CHBrOAc)C(O)OC_2H_5$

Into a thoroughly dried 100 ml Pyrex glass Carius tube containing a magnetic stirring bar, 10.01 g of AcOCH=CHC(O)OC₂ \dot{H}_5 (63.4 mmol) and 45 ml of $CCl_{3}F$ (dried over $P_{4}O_{10}$) was added. The solution was degassed three times by freeze-pump-thaw-freeze cycles, and then 18.15 g (87.7 mmol) of bromine-free SF₅Br (shaken with Hg) was added via vacuum-transfer. The lower part of the tube (c. 3 cm) was immersed in an ice bath, and the solution was stirred and irradiated (GE-250 W sunlamp, 80 cm distance) for 14 h. When the volatile materials were condensed into a very dry cold trap, it was found that the residue still contained some olefin; the volatile materials in the cold trap and an additional 4.36 g of SF₅Br (21.1 mmol) were recondensed into the Carius tube. Irradiation at ice temperature was continued for 7.5 h (50 cm distance). A check of the IR spectrum showed that some olefin was still present. For this reason, the volatile materials were recondensed as above and irradiation was continued for another 10 h (30 cm distance) at 0 °C. The solution was by now distinctly yellow and a precipitate had appeared; no C=C bonds were detected in the IR spectrum of the condensation residue (the Carius tube was stored between operations in an ice bath). After vacuum transfer of the volatile materials, 20.5 g of a light brown oil remained; yield (crude) 88.7%. The ¹⁹F NMR spectrum showed that a very small amount of an impurity exhibiting peaks at -120 ppm to -130ppm was present; when the reaction was not carried out at low temperature, there was much more of this impurity present. Part of this crude product was distilled (5.01 g, 0.017 Torr) when a fraction, boiling range 55–70 °C (1.81 g, first fraction, oil bath temperature = 100 °C), containing some of the C–F impurity ($\phi = -120$ to -130 ppm), showed some enrichment of the $\phi \approx 52$ ppm impurity; the second fraction, b.p. 58–61 °C (1.20 g, oil bath temperature = 90 °C, very slow distillation), a colorless oil, was free of the C–F impurity. The samples were stored in a refrigerator since they turned yellowish at room temperature within hours. Yield (extrapolated) 56%. The purity of the second fraction was estimated from ¹⁹F NMR measurements to be 98% with the contaminant being the $\phi_B \approx 52$ ppm SF₅ compound.

¹H NMR (neat sample, Si(CH₃)₄ ext.): $\delta_1 = 1.68$ ppm [t, rel. area = 3.1 (CH₃CH₂)]; $\delta_2 = 2.55$ ppm [s, rel. $area = 3.0 (CH_3C(O)O)$; $\delta_3 = 4.74 \text{ ppm}$ [q, rel. area = 2.0 (CH_3CH_2) ; $\delta_4 = 5.53$ ppm [d-p, rel. area = 1.0 $(CHCOOC_2H_5)$]; $\delta_5 = 7.63$ ppm [d, rel. area = 0.9, $(CH_{3}C(O)OCH)]; J_{13} = 7.22 Hz, J_{45} = 10.8 Hz,$ $J_{4B} = 5.7 \pm 0.2$ Hz (coupling to SF₅, AB₄). All lines were broadened. ¹⁹F NMR (neat sample, CCl₃F ext.): $\phi_{\rm A} = 79.0$ ppm (9 lines, rel. area = 1.0); $\phi_{\rm B} = 67.3$ ppm (d-m, rel. area = 4.0); J_{AB} = 149.7 Hz. IR (neat sample, KBr) (cm⁻¹): 3025 (vw, sh); 2992 (w); 2945 (vw); 1784 (s); 1754 (s); 1470 (w); 1449 (w); 1440 (w); 1373 (m); 1354 (w); 1308 (m); 1262 (m); 1195 (s); 1164 (m, sh); 1116 (m); 1101 (m, sh); 1054 (s); 1034 (m, sh); 969 (vw); 940 (vw); 890 (s); 854 (vs); 795 (m); 735 (vw); 697 (w, br); 671 (w); 665 (w); 621 (w); 599 (m); 570 (m); 525 (w). MS (EI, 70 eV) (mass, species, % > 1%): 285, $(M - Br)^+$, 1.7; 197, $(M - Br - COOC_2H_3 - CH_3)^+$, 2.2; 194, $(M-Br-COOC_2H_5-O-2H)^+$, 1.1; 168, F₅SCHCO⁺, 1.3; 166, C₃H₃F₅S⁺, 2.2; 149, C₂HF₄OS⁺, 7.1; 146, C₅H₃FO₂S⁺, 1.9; 127, SF₅⁺, 1.4; 89, SF₃⁺, 1.9; 69, C₃HO₂⁺, 3.2; 45, C₂H₅O⁺, 3.8; 44, C₂H₄O⁺, 3.9; 43, CH₃CO⁺, C₂H₃O⁺, 100.0. Analysis: Calc. for C₇H₁₀BrF₅O₄S: C, 23.03; H, 2.76; Br, 21.88; F, 26.0%. Found: C, 22.77; H, 2.67; Br, 22.21; F, 25.4%.

Preparation of $F_5SCH_2CHBrC(O)OC_2H_5$

SF₅Br (41.42 g, 200.1 mmol) was transferred to a 75 ml steel vessel held at -196 °C, then 19.78 g (197.8 mmol) of ethyl acrylate, dried over MgSO₄, was condensed in at the same temperature and the vessel allowed to slowly attain room temperature. When the vessel had reached 10–15 °C, it was noticed that the temperature climbed rapidly to about 50 °C, from where it dropped slowly back to room temperature. The vessel was kept at room temperature for 2 h, then warmed to 55 °C for 19 h. After removing volatile materials from the vessel, 4.72 g of a viscous liquid was obtained.

The combined products from the bomb were distilled using a 12 cm Vigreux column (3 Torr), yielding one fraction (21.55 g) boiling at 66.5–67.8 °C. Upon raising the temperature, the residue turned yellow; the pressure was lowered to 0.005–0.020 Torr (dynamic vacuum) and 3.07 g of a fraction boiling >110 °C was collected. The cold trap contained 1.08 g of a material which was mainly ethyl acrylate (¹H NMR spectroscopy). Yield 35.5% of theory.

¹H NMR (neat sample, Si(CH₃)₄ ext.): $\delta_1 = 1.33$ ppm [t, rel. area = 3.00 (CH₃)]; $\delta_2 = 4.30$ ppm [q, (CH₃CH₂), J = 7.2 Hz]; $\delta_3 = 3.6-5.0$ ppm [m, total area (quartet + multiplet) = 5.04 (SF₅CH₂CH + CH₃CH₂)]. ¹⁹F NMR (CHCl₃, CFCl₃ ext.): (AB₄), $\phi_A = 81.49$ ppm; $\phi_{\rm B} = 65.83$ ppm (d-m, $J_{\rm AB} = 147.4$ Hz). ¹⁹F NMR (neat sample, CFCl₃ ext.): $\phi_{A} = 81.00$ ppm; $\phi_{B} = 65.17$ ppm. IR (neat sample, KBr) (cm^{-1}): 3042 (w); 2988 (w-m); 2946 (w-vw); 2912 (vw); 2881 (vw); 1750 (vs); 1477 (w, sh); 1469 (w-m); 1456 (w-m); 1417 (m); 1398 (m); 1378 (m-s); 1356 (m); 1311 (m-s); 1262 (m-s); 1241 (s); 1206 (w, sh); 1187 (m-s); 1158 (m-s); 1116 (w, sh); 1097 (w); 1089 (w, sh); 1034 (m); 1018 (m); 988 (m); 965 (w-vw); 926 (w); 877 (s-vs); 851 (vs); 832 (vs); 802 (m-s); 740 (w, br); 698 (vw); 673 (vw); 648 (vw); 623 (vw); 602 (m); 577 (s); 564 (m); 481 (w). MS (EI, 70 eV) (mass, species, % > 1): 179, C₅H₇BrO₂⁺, 6.3; 155, $SF_5C_2H_4^+$, 18.6; 153, $SF_5C_2H_2^+$, 28.1; 151, $F_5SC_2^+$, 2.1; 135, $C_2^{79}BrO_2^+$, 3.2; 135, $SF_4C_2H_3^+$, 2.9; 127, SF₅⁺, 13.5; 126, SF₃C₃H⁺, 1.5; 125, SF₃C₃⁺, 15.0; 109, $C_3H_3F_2S^+$, 9.1; 108, SF_4^+ , 66.2; 107, $C_3H_4FOS^+$, 12.5; 106, C₃H₃FOS⁺, 65; 105, C₃H₂FOS⁺, 10.2; 99, $C_5H_7O_2^+$, 9.2; 89, SF_3^+ , 32.7; 85, $C_4H_5O_2^+$, 2.1; 73, $C_{3}H_{5}O_{2}^{+}$, 10.6; 71, $C_{3}H_{3}O_{2}^{+}$, 2.5; 70, SF_{2}^{+} , 5.3; 67, $C_4H_3O^+$, 3.6; 56, $C_3H_4O^+$, C_2S^+ (two fragments), 4.9, 3.7; 30.9; 55, C₃H₃O⁺, 100.0; 54, C₃H₂O⁺, 5.2; 53, C₃HO⁺, 6.3; 51, SF₂⁺, 2.1. Analysis: Calc. for C₄H₈BrF₅O₂S: C, 16.28; H, 2.73; Br, 27.08; F, 32.2; S, 10.87%. Found: C, 20.10; H, 2.58; Br, 28.68; F, 29.4; S, 9.86%.

Attempted dehydrohalogenation of $F_5SCH_2CHBrC(O)OC_2H_5$

No tractable products were obtained from the reaction with aqueous potassium hydroxide. Both Br⁻ and F⁻ were detected in the solution. The course of the reaction both with *N*,*N*-dimethylaniline and diazabicyclononane was similar; with the latter, charring occurred at room temperature and the ¹⁹F NMR spectrum of the reaction mixture showed a singlet at 73.6 ppm, which is probably SF₄ (δ 72.7 ppm for SF₄ in CDCl₃). The reaction was finally carried out at -78 °C in the following manner.

In a 50 ml round-bottomed flask equipped with a magnetic stirring bar, 1.0 g of $SF_5CH_2CHBrC(O)OC_2H_5$ (3.26 mmol) was dissolved in 15 ml of anhydrous ether. A dropping funnel containing 0.40 g of diazabicyclo-

nonane (Aldrich) (3.26 mmol) in 2 ml of ether (anhydrous) equipped with a Drierite tube was fitted onto the flask and the latter cooled in an acetone/Dry Ice bath to -78 °C. The base solution was added dropwise during 10 min. A white precipitate formed immediately upon addition of the base. When addition was completed, the mixture was allowed to slowly attain room temperature (c. 45 min). The white precipitate dissolved during the warming-up process, leaving an almost colorless clear solution. This was kept in a refrigerator overnight (+4 °C) when a light brown oil had separated out by the next morning (IR spectrum: no SF_5 , 0.22 g). The remaining solution was freed from solvent by distillation, leaving 0.82 g of a brownish oil. This exhibited only a weak SF₅ band in its IR spectrum and traces of starting material in the ¹⁹F NMR spectrum. No other fluorine compound was found. The ¹H NMR spectrum indicated as the sole product that which was obtained earlier in the attempted dehydrohalogenation with N,N-dimethylaniline together with some diethyl ether. This material was identified as 2-bromoacrylic ester by comparison of its spectra with an authentic sample (¹H NMR and IR spectroscopies). The product polymerized quite readily to a rubbery translucent mass.

Preparation of $F_5SCH_2CHClCH_2OC(O)CH_3$

CH₂=CHCH₂OC(O)CH₃ (Aldrich) (6.50g, 65 mmol), 11.69 g of SF₅Cl (PCR, 72 mmol) and 25 ml of CCl₃F were heated in a 75 ml steel bomb at 95 °C for 15 d. After venting and bleeding 11.69 g of the gaseous products, the CCl₃F was distilled off at atmospheric pressure and vacuum distillation (1–2 Torr) resulted in four fractions: 1, 20–55 °C (1.54 g); 2, 55–58 °C (3.36 g); 3, 58–61 °C (4.78 g); 4, 61–62 °C (1.54 g). Fraction 1 was c. 95% pure adduct, the remainder being allyl acetate. Fractions 2, 3 and 4 exhibited the same ¹H NMR spectrum and indicated that only a trace of allyl acetate was present. The cold trap contained 1.96 g of liquid which was largely allyl acetate. Yield of 2+3+4 9.68 g (56.8%).

¹H NMR (neat sample, Si(CH₃)₄ ext.): $\delta_1 = 2.50$ ppm [s, rel. int. = 3.0 (CH₃)]; $\delta_2 = 4-5.4$ ppm (m, rel. int. = 5.5). ¹⁹F NMR (neat sample, CCl₃F ext.): (AB₄), $\phi_A = 83.2$ ppm (9 lines, rel. int. = 1.02); $\phi_B = 67.7$ ppm (d-m, rel. int. = 4.00); $J_{AB} = 154.1$ Hz. IR (neat sample, NaCl) (cm⁻¹): 3029 (w); 2973 (w); 2855 (vw); 1752 (vs); 1460 (w-m); 1430 (m, sh); 1420 (m); 1385 (m-s); 1369 (m-s); 1318 (vw); 1302 (vw); 1232 (s-vs); 1111 (w); 1063 (m, sh); 1045 (m); 1026 (m); 945 (m); 873 (s); 846 (vs); 828 (vs); 728 (w); 715 (w-vw); 696 (vw); 636 (vw); 621 (w); 599 (m); 565 (w). MS (CI) (mass, species, %): 263, [M(³⁵Cl) + H]⁺, 100; 181, [M(³⁵Cl) - CH₃COOH -2H - F]⁺, 11.5; 136, [M(³⁵Cl)H - SF₅]⁺, 1.5; 135, [M(³⁵Cl) - SF₅]⁺, 29.9; 113, (M + 2H - Cl - 3F -CH₃COO)⁺, 1.9; 102, SF₃CH⁺, 2.8; 101, SF₃C⁺, 62.9; 89, SF_3^+ , 1.6; 85, $CH_3COOCH_2C^+$, $SCCCHO^+$, 6.4; 83, $CH_3COOC_2^+$, SF_2CH^+ , 4.4; 81, $CHCOOC_2^+$, 6.3; 79, $C_5H_3O^+$, 3.3; 73, $CH_3COOCH_2^+$, 9.5; 71, CH_3COOC^+ , 10.8; 70, SF_2^+ , $C_3H_2S^+$, 4.4; 69, $CHCOOC^+$, 12.0; 67, $C_4H_3O^+$, 6.9. Analysis: Calc. for $C_5H_8CIF_5O_2S$: C, 22.87; H, 3.07; Cl, 13.50; F, 36.2; S, 12.21%. Found: C, 23.10; H, 3.19; Cl, 13.61; F, 36.5; S, 12.00%.

Preparation of $F_5SCH=CHCH_2OH$ by aqueous hydrolysis

F₅SCH₂CHClCH₂C(O)OCH₃ (4.00 g, 15.2 mmol) was stirred at room temperature with 9.0 g of a 23% KOH solution for 20 h. According to the ¹⁹F NMR spectrum, all the starting material reacted. Accordingly, the lower layer was pipetted off (2.59 g, 92.3%). There was apparently no significant amount of water (as had been suggested by the IR spectrum), since drying over K₂CO₃ or CaO did not alter the IR spectrum which exhibited a broad feature at 1640 cm⁻¹. Vacuum distillation (39–42 °C/2.5 mmHg) also did not lead to an altered IR spectrum. A sample for ¹H NMR spectroscopy was prepared by preparative gas chromatography (5% QF-1 on Chromosorb W, 1 m, 120 °C).

¹H NMR (CDCl₃, 400 MHz, Si(CH₃)₄ ext.): (ABM₂X), $\delta_{A} = 6.67$ ppm (m, SF₅CH=); $\delta_{B} = 6.55$ ppm (m, $SF_5CH = CH$) (area A + B = 2.00); $\delta_M = 4.34$ ppm (s, CH₂, area = 2.04); $\delta_x = 1.75$ ppm (s, OH, area = 1.13); $J_{AB} = 14.8$ Hz. ¹⁹F NMR (neat sample, CCl₃F ext.): (AB₄), $\phi_A = 83.1$ ppm (9 lines with doublet splitting, area = 1.0); $\phi_{\rm B} = 62.3$ ppm (asymmetric doublet, area = 4.0): J_{AB} = 151.3 Hz, J_{AH} = 4.2 Hz. IR (neat sample, film on KBr plates) (cm⁻¹): 3664 (w); 3353 (m-s, br); 3103 (w-m); 2923 (w); 2879 (w); 1644 (w, br); 1449 (w-m); 1434 (w, sh); 1370 (w); 1300 (w); 1229 (w-m); 1208 (w, sh); 1097 (m-s); 1030 (m); 1009 (w-m); 984 (w-m); 940 (s); 902 (s-vs); 837 (vs); 764 (s); 726 (m); 661 (m); 648 (m); 602 (m); 571 (m); 540 (m); 441 (w-m). MS (EI, 70 eV) (mass, species, % > 2): 183, $(M-H)^+$, 0.2; 135, $(M-F-CH_2O)^+$, 48.7; 127, SF_5^+ , 16.1; 116, $SF_3C_2H_3^+$, 2.4; 97, $SF_2C_2H_3^+$, 5.7; 91, C₃H₄FS⁺, 3.7; 89, SF₃⁺, C₃H₅OS⁺, 100.0; 75, C₂FS⁺, 11.1; 73, $(M+H-5F-OH)^+$, 2.1; 70, SF_2^+ , 16.5; 59, $C_2H_3S^+$ (M + H - 5F - CH₂OH)⁺, 6.5; 58, $C_2H_2S^+$, 4.9; 57, C₃H₅O⁺, 79.4; 55, C₃H₃O⁺, 22.8; 53, C₃HO⁺, 3.5; 51, SF⁺, 3.4. Analysis: Calc. for C₃H₅F₅OS: C, 19.57; H, 2.74; F, 51.6; S, 17.41%. Found: C, 19.69; H, 2.79; F, 51.5; S, 17.48%.

Preparation of $F_sSCH=CHCH_2OH$ in methanolic methoxide (anhydrous conditions)

To a solution of $SF_5CH_2CHClCH_2OAc$ (2.10 g, 8.0 mmol) in 2.0 g of anhydrous CH_3OH (Mallinckrodt) contained in a 10 ml flask equipped with a magnetic stirring bar, Claisen head, Drierite tube and dropping

funnel, was added a solution consisting of 0.23 g of sodium (0.01 mol) in 5.0 ml of anhydrous methanol dropwise at -20 °C (acetone/Dry Ice). No obvious reaction occurred, so the cold bath was removed and the reaction flask allowed to attain room temperature. When this temperature had nearly been reached, a white precipitate quickly formed. Addition of further CH₃ONa solution caused the formation of more precipitate. After c. 0.8-times the total volume of methoxide solution had been added, stirring was stopped and the precipitate allowed to settle. Addition of another drop of CH₃ONa to the clear colorless supernatant solution caused no further turbidity. After maintaining the mixture for an additional 3 h at room temperature, the methanol was removed by stirring the solution at c.50Torr for 1 h (the methanol was collected in a -196°C trap). Distillation at 6-6.5 Torr afforded two fractions (54.5-57 °C, 0.54 g; 57-57.5 °C, 0.84 g) as colorless viscous liquids which exhibited identical IR spectra. Yield 1.38 g (93.8%). The material was identical in all respects to the product obtained by aqueous hydrolysis.

Preparation of $F_5SCH_2CH(OCH_3)OC(O)CH_3$

To 7.92 g of F₅SCH₂CHClOC(O)CH₃ (31.9 mmol) in 10 ml of anhydrous CH₃OH, contained in a 100 ml round-bottomed flask equipped with a magnetic stirring bar, Claisen head, Drierite tube and dropping funnel, was added 2.15 g of 85% KOH dissolved in 10 ml of anhydrous methanol (32.6 mmol). (A slight excess was necessary because the starting material and the product could not be separated by distillation when the reaction was incomplete.) The base solution was added within 20 min at -78 °C and the solution then brought slowly to room temperature. The methanol was distilled off at atmospheric pressure. A small amount of water was then added and the precipitate removed (5.50 g). No starting material was present. Distillation (30-37 °C 3-4 Torr) gave 1.58 g of F₅SCH₂CH(OCH₃)OC(O)CH₃. The contents of the cold trap $(-196 \text{ }^{\circ}\text{C})$ were distilled to give 2.85 g of a mixture $(F_5SCH_2CH(OH)_2 +$ F_5SCH_2CHO). Yield 1.58 g (45%) together with some F₅SCH₂CH(OCH₃)OC(O)CH₃ (0.36 g). Total yield (1.58+0.36) g=1.94 g (24.8%). An analytically pure sample was obtained by preparative GC on a Carbowax (20%) column, 3 ft., 100 °C, 1 ml He s⁻¹ gas flow.

¹H NMR (CDCl₃, Si(CH₃)₄ ext.): δ_1 =2.65 ppm [s, 3.00H (OCH₃)]; δ_2 =4.03 ppm [s, 3.00H (C(O)CH₃)]; δ_3 =4.37 ppm [d-p, 2.07H (SF₅CH₂)]; δ_4 =6.70 ppm [t, 0.98H (CH)]; J_{CH_2-B} =8.23 Hz, J_{H-H} =5.13 Hz. ¹⁹F NMR (CDCl₃, CCl₃F ext.): (AB₄), ϕ_A =83.67 ppm (9 lines, 1.07F); ϕ_B =68.79 ppm (d-m, 4.00F); J_{AB} =147.4 Hz. IR (neat sample, KBr) (cm⁻¹): 3041 (vw); 3013 (vw); 2973 (w); 2948 (w); 2858 (w); 1755 (s); 1453 (w-m); 1420 (w-m); 1377 (m); 1360 (w, sh); 1300 (vw); 1255

(m, sh); 1230 (s); 1190 (m-s); 1142 (m); 1128 (m); 1083 (m, sh); 1078 (m); 1050 (m); 1014 (s); 992 (m); 941 (m, br); 879 (s); 842 (vs); 824 (s-vs); 714 (w-m); 655 (w, sh); 641 (m); 604 (m); 581 (w); 564 (w-m); 558 (w-m); 549 (w, sh); 581 (vw); 566 (w); 557 (w); 550 (vw). MS (EI, 70 eV) (mass, species, % > 1): 185, $(M - CH_3COO)^+$, 90.7 [+peaks at 187 (3.8) and 186 (4.9), S+C isotope peaks]; 184, $(M-CH_3COOH)^+$, $(M - CH_3COOH - CH_3)^+$, 19.7; 169, 1.6; 165, $(M - CH_3COO - HF)^+$, 12.3; 163, $(M - CH_3O CH_3 - O - F)^+$, 3.0; 153, $(M - CH_3COOH - CH_3O)^+$, 5.3; 149, $(M - CH_3COOH - CH_3 - HF)^+$, 2.3; 127, SF₅⁺ 12.0; 122, $C_3F_2OS^+$, 3.4; 103, $C_4H_7O_3^+$, 1.4; 101, $C_4H_5O_3^+$, 2.5; 96, $F_2SC_2H_2^+$, 1.1; 91, FSCCO⁺, 1.9; $89, SF_3^+, 43.6; 87, C_3H_3O_3^+, 2.3; 83, C_4H_3O_2^+, F_2SCH^+,$ 1.3; 81, C₄HO₂⁺, 1.9; 78, C₂H₃FS⁺, 3.7; 77, C₂H₂FS⁺ 74.5; 76, C₂HFS⁺, 11.9; 75, C₂H₃OS⁺, C₂FS⁺, 8.7; 74, C₂H₂OS⁺, 7.6; 73, C₂HOS⁺, 3.3; 70, C₃H₂O₂⁺, SF₂⁺, 6.2; 69, C₃HO₂⁺, 1.1; 65, CH₂FS⁺, 3.9; 64, CHFS⁺ 1.0; 63, CFS⁺, 100.0; 61, (CH₃CO₂H₂)⁺, 13.2; 60, CH₃COOH⁺, 18.5; 59, CH₃COO⁺, 1.2; 58, CH₂COO⁺, 17.0; 57, CHCOO⁺, 17.2. Analysis: Calc. for C₅H₉F₅O₃S: C, 24.59; H, 3.72; F, 38.9; S, 13.13%. Found: C, 24.66; H, 3.75; F, 39.4; S, 13.24%.

References

G.L. Gard and C.W. Woolf, US Pat. 3 448 121 (1969); G.L.
 Gard, J. Bach and C.W. Woolf, Br. Pat. 1 167 112 (1969);
 E.E. Gilbert and G.L. Gard, US Pat. 3 475 453 (1969); R.E.

Banks and R.N. Haszeldine, *Br. Pat. 1 145 263* (1969); Y. Michimasa, *Chem. Abs.*, 82 (1975) 175 255g; W.A. Sheppard, *US Pat. 3 219 690* (1965).

- D.D. Coffman and C.W. Tullock, US Pat. 3 102 903 (1963);
 R. DeBuhr, J. Howbert, J.M. Canich, H.F. White and G.L. Gard, J. Fluorine Chem., 20 (1982) 515.
- 3 R.J. Terjeson, J. Mohtasham, R.M. Sheets and G.L. Gard, J. Fluorine Chem., 38 (1988) 3; idem., Inorg. Chem., 27 (1988) 2916.
- 4 R. Winter and G.L. Gard, Inorg. Chem., 27 (1988) 4329.
- 5 D.D. Coffman, W. Chester and C.W. Tullock, US Pat. 3 102 903 (1963).
- 6 R.A. Bekker, B.L. Dyatkin and I.L. Knunyants, *Izv. Akad.* Nauk SSSR, Ser. Khim., (1970) 2575 (Engl. trans.).
- 7 D.D. Coffman and C.W. Tullock, *Can. Pat.* 728 186 (1962).
 8 S. Akiyoshi and K. Okuno, *J. Am. Chem. Soc.*, 74 (1952) 5759 (ICH₂CH(OR)₂); P. Bedoukian, *J. Am. Chem. Soc.*, 66 (1944) 651 (BrCH₂CH(OR)₂).
- 9 D.L. Heywood and B. Phillips, J. Org. Chem., 25 (1960) 1699.
- 10 J. Leroy, H. Molines and C. Wakselman, J. Org. Chem., 52 (1987) 290; I. Rico, D. Cantacuzene and C. Wakeselman, Tetrahedron Lett., 22 (1981) 3405.
- 11 C.S. Marvel, J. Dec, H.G. Cooke, Jr. and J.C. Cowan, J. Am. Chem. Soc., 62 (1940) 3495.
- W. Wislicenus, Ber. Dtsch. Chem. Ges., 20 (1887) 2930; H. von Pechmann, *ibid.*, 25 (1892) 1040; M. Salmon, M.C. Perezamador and F. Walls, Bol. Inst. Quím., Unic. Nac. Autón. Mex., 18 (1966) 23; [Chem. Abs., 67 (1967) 43386]; P. Freeman, B.K. Stevenson, D.M. Balls and D.H. Jones, J. Org. Chem., 39 (1974) 546; S. Ranganathan, D. Ranganathan and A.K. Mehrotra, Synthesis, (1976) 620; H. Blancou and E. Casadcvall, Tetrahedron, 32 (1976) 2907.
- 13 G.G. Odian, Principles of Polymerization, 3rd edn., Wiley, New York, 1991, p. 253.
- 14 R. Winter and G.L. Gard, J. Fluorine Chem., 50 (1990) 141.
- 15 J. Wessel, G. Kleemann and K. Seppelt, *Chem. Ber.*, 116 (1983) 2399.
- 16 J.C. Hansen and P.M. Sarn, Eur. Pat. 0 444 822A1 (1992).